Farrell–Jones spheres and inertia groups of complex projective spaces
نویسندگان
چکیده
منابع مشابه
String cohomology groups of complex projective spaces
Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. We compute the equivariant cohomology H(LXhT;Z/p) as a module over H ∗(BT;Z/p) when X = CP for any positive integer r and any prime number p. The computation implies that the associated mod p Serre spectral sequence collapses from the E3-page. MSC: 55N91; 58E05; 55P35; 18G50
متن کاملHarmonic tori in spheres and complex projective spaces
Introduction A map : M ! N of Riemannian manifolds is harmonic if it extremises the energy functional: Z jdj 2 dvol on every compact subdomain of M. Harmonic maps arise in many diierent contexts in Geometry and Physics (for an overview, see 15,16]) but the setting of concern to us is the following: take M to be 2-dimensional and N to be a Riemannian symmetric space of compact type. In this case...
متن کاملRational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces
We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.
متن کاملbiquaternions lie algebra and complex-projective spaces
in this paper, lie group structure and lie algebra structure of unit complex 3-sphere are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of and the special complex unitary matrices (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers . the relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum Mathematicum
سال: 2015
ISSN: 0933-7741,1435-5337
DOI: 10.1515/forum-2013-0072