Farrell–Jones spheres and inertia groups of complex projective spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

String cohomology groups of complex projective spaces

Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. We compute the equivariant cohomology H(LXhT;Z/p) as a module over H ∗(BT;Z/p) when X = CP for any positive integer r and any prime number p. The computation implies that the associated mod p Serre spectral sequence collapses from the E3-page. MSC: 55N91; 58E05; 55P35; 18G50

متن کامل

Harmonic tori in spheres and complex projective spaces

Introduction A map : M ! N of Riemannian manifolds is harmonic if it extremises the energy functional: Z jdj 2 dvol on every compact subdomain of M. Harmonic maps arise in many diierent contexts in Geometry and Physics (for an overview, see 15,16]) but the setting of concern to us is the following: take M to be 2-dimensional and N to be a Riemannian symmetric space of compact type. In this case...

متن کامل

Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces

We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.

متن کامل

biquaternions lie algebra and complex-projective spaces

in this paper, lie group structure and lie algebra structure of unit complex 3-sphere     are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of     and the special complex unitary matrices    (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers    .  the relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2015

ISSN: 0933-7741,1435-5337

DOI: 10.1515/forum-2013-0072